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A microscopic model is constructed within the theory of normal fluctuations for 
quantum systems, yielding an irreversible dynamics satisfying the Onsager 
relations. The property of return to equilibrium and the principle of minimal 
entropy production are proved. 
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1. INTRODUCTION 

In this paper we derive from the microscopic theory a number of assump- 
tions :in the phenomenological macroscopic Onsager theory. This theory 
should follow straightforwardly from the microscopic laws of motion and 
from the principles of statistical mechanics. 

In the classical Onsager theory (see, e.g., ref. 1), one is interested in a 
finite number of macroscopic variables or observables A1,..., An, namely 
the "coarse-grained" ones. One considers a phase space F; any element 
e =  (cq ..... c%) of F represents a state of the system by the association 
(~i-~ (Ai), i.e., the ~i are the expectation values of the observables Ai. The 
equilibrium state is assumed to correspond to the value ~=0,  and 
postulated to be the state of minimal entropy. One more basic assumption 
is that the ei are Gaussian random variables with distribution 

f (cQ= f(O) e -(~'s~)/2, S>/O 
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and that the ai describe a regime not far from equilibrium. The Boltzmann 
entropy postulate yields the identification of the entropy difference AS with 

AS S(a) -S(0)  1 
--k-= k = - ~  (a, Sa) 

where S(a) is the entropy of the state a and k the Boltzmann constant. The 
above formula is looked upon as the harmonic approximation or the linear 
response expression of the entropy around the equilibrium state. 

One of the basic results of the Onsager theory are the Onsager rela- 
tions, which are the macroscopic expression of the microscopic reversibility 
of the equations of motion. It is our aim to derive these results in a mathe- 
matically rigorous way. It is well known that a natural scheme for all this 
is the theory of fluctuations, the latter being the result of a central limit 
theorem. 

Recently, we developed the mathematical theory of fluctuations for 
quantum mechanical systems. We will use it to derive the basic facts of the 
theory of Onsager for quantum systems. In refs. 2 and 3 central limit 
theorems are derived for sets of noncommuting observables as well as for 
product states and for mixing states. A complete mathematical description 
of the central limits is obtained. The set of macroscopic fluctuations forms 
again a noncommutative algebra, namely a representation of the canonical 
commutation relations induced by a generalized free or quasifree state. This 
is the natural generalization of the classical random variable with Gaussian 
distribution in the commutative case. It is also pointed out how the natural 
conservative time evolution of the system induces a nontrivial time evolu- 
tion on the macroscopic fluctuations. This clarifies and generalizes the 
computations of these time evolutions performed for the examples of mean 
field models (e.g., refs. 4 and 5). It enables us also to interpret the quasifree 
limit state as the equilibrium state of the macrosystem of fluctuations. Our 
program here is the study of nonequilibrium phenomena within the above 
scheme of the mathematical theory of fluctuations. 

The physical situation which we consider here is the usual one, namely 
the evolution of the fluctuations of the system driven by heat reservoirs. 
Numerous models for this mechanism have been studied (see, e.g., ref. 6 for 
a recent model). We work with a microscopic model obtained as the result 
of a weak coupling limit satisfying a quantum generalization of a classical 
Markov process. The natural time evolution of the microscopic model is 
the Heisenberg evolution a t described by d Hamiltonian H. We limit our 
discussion here to systems with continuous spectrum. This is characterized 
by the condition of LX-asymptotically Abelianness 

I ~ ds [I [as(X), Y] II < 
- - ~ z o  
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for a large set of observables X and Y of the system. If the spectrum of 
the Hamiltonian is discrete, the main results of the paper remain true; the 
proofs are similar but are not given here. Furthermore, we suppose that the 
system is given in an equilibrium state co at inverse temperature fl, which 
we normalize to/3 = 1, showing normal fluctuations for enough observables. 
The latter condition is at least always satisfied if the temperature is high 
enough. 

Then we consider an irreversible dynamics by coupling the 
microscopic model to a heat reservoir R. The interaction Hamiltonian 
system-reservoir HSR is of the type 

I x ( x )  - co(x)]  z vax 

where X* = X is a system observable and Z* = Z is a bath observable. For 
fixed volume V, applying the weak coupling limit yields an irreversible 
Markovian evolution exp(tLv). A precise definition of Lv is given in for- 
mula (3.1) below. It is well known that this evolution is microreversible or 
in other words satisfies the condition of detailed balance. It expresses the 
fact that the heat reservoirs are at thermal equilibrium. It is clear that the 
coupling of the system with the reservoirs is of a very special type because 
of the presence of the volume integral divided by the square root of the 
volume. The effect in the generator L v of the Markovian evolution is such 
that the coupling becomes of the mean field type. 

Our main technical contribution consists in the study of the ther- 
modynamical limit L v ~ L for the volume V tending to infinity. We con- 
sider this limit as a central limit and derive the very specific form of the 
limit L. We identify L as a map of the algebra of macroscopic fluctuations 
in itself. We prove that L is exponentiable to a semigroup of quasifree maps 
on the fluctuations. This is a macroscopic dynamical semigroup for which 
we show the symmetry relations of the Onsager theory. The program of 
irreversible thermodynamics for quantum systems has been studied by 
Spohn and Lebowitz. (9) Their coupling, however, was a local one, such that 
their results hold only in the linear regime (see also ref. 10). In fact, we 
show here that the linear regime results become exact if one takes mean 
field type couplings. Differently formulated, the Onsager theory becomes 
exact if the system shows normal fluctuations. Moreover, we clarify the 
notion of entropy production and prove the phenomenon of approach to 
equilibrium and the principle of minimal entropy production for infinite 
systems. 
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2. T H E  M O D E L  

Our basic starting point is a quantum mechanical system given by the 
triplet ( d ,  p, ~,), where d is a unital C*-algebra of observables, (~t), is a 
strongly continuous one-parameter group of *-automorphisms, and p is an 
equilibrium or KMS state of ( d ,  ~,) at inverse temperature/~ = 1, i.e., for 
all x, y in a norm dense *-subalgebra (d~) of d consisting of the 
~,-analytic elements, one has cla) 

p(x~iy  ) = p (yx )  

It is well known that the state p is ~, or time invariant. 
We define the algebra of normal fluctuations of the physical system 

( d ,  p) as the CCR-C*-algebra W(H, ~rp), c2) where we take H =  dsa the 
real space of self-adjoint elements of the algebra d and where crp is the 
symplectic form on d~,: 

~rp(x, y ) =  - i p ( [ x ,  y]); x, y e d s a  (2.1) 

The algebra W(d~a, o-p) is the C*-algebra generated by the Weyl operators 
W(x),  x �9 ,.~r satisfying the product rule 

W(x)  W ( y ) =  W(x  + y) e -~'p(x'y)/2 (2.2) 

The fact that this algebra of canonical commutation relations (CCR) is 
the algebra of normal fluctuations of the system becomes clear from the 
following central limit theorem, which we formulate for independent 
random operators. The noncommutative central limit theorem for weakly 
dependent random operators or for mixing systems can be found in ref. 3. 

A natural way of introducing a quantum mechanical notion of 
independence is via the tensor product construction of the algebra of 
observables and the product property of the state. 

Consider the C*-algebra ~,  generated by the sequence of algebras 
n 

~ = |  ~,, n = 1 , 2 , 3  .... 
i=1 

where the ~,. are copies of d .  For each x �9 d ,  denote by x i the imbedding 
of x in ~ ,  

x / = I Q  ... | 1 7 4 1 7 4  ... 

where x is at the ith place. Denote 

~" = [ x ~ -  p ( x ) ]  �9 
~ i = 1  

the local (n is finite) fluctuation of x. 
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Consider also the product state cop of ~ determined by the given state 
p of d and defined by 

cop aj -= p(aj); aj ~ d 
1 j = l  

In this way we define a lattice system (~, cop). Now we are able to give the 
following noncommutative central limit theorem. Its proof in the W* 
formulation can be found in ref. 2, Theorem 3.1. For this case the proof can 
be readily transcribed. 

T h e o r e m  2.1. For each x ~ s~C~a, the limit 

lirnoo c%(exp i)~ n) 

exists and defines a quasifree state cos (see ref. 12) of the CCR-C*-algebra 
of fluctuations W(sJ~a, ep) such that 

E' J l i r n  coo(ex p i2") = cos(W(x)) = exp - -~ s(x, x) (2.3) 

where s is the real, symmetric, positive bilinear form on s~'~a given by 

s ( x , y ) = R e p ( [ x - p ( x ) ] [ y - p ( y ) ] ) ;  x, y6xur | 

As the quasifree state ms is a regular state, the Weyl operators W(x) are 
represented by exponentials of the Bose field operator Bp(x): 

W(x) = exp iBp(x), x ~ ~sa (2.4) 

satisfying the commutation relations [Bp(x), Bp(y)] = icrp(x, y). In view of 
the relation (2.3), one can make the identification 

Bp(x) = " l i m "  2 n 
n ~ o o  

suggesting the interpretation that the unbounded operators Bp(x) are 
nothing but the (macroscopic) fluctuations of the observables x e ~r 

In the commutative case (for classical systems) the algebra of fluctua- 
tions is again commutative. The quasifree state co s reduces in that case to 
a Gaussian measure. 

The natural time evolution c~, defined on the system ( d ,  p) induces a 
conservative time evolution on the algebra of fluctuations. In particular, we 
have the following result. 
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T h e o r e m  2.2 (ref. 2, Theorem 3.3). 
by the formula 

For t ~ ~, the maps ~e defined 

~t m ( x )  = W(o~tx), x e ~sa 

define a one-parameter group of quasifree *-automorphisms of the algebra 
of fluctuations W(d~a, ap). The state cos is an ~,-KMS state at fl = 1 on the 
yon Neumann algebra W(dsa, %)", generated by the representation of the 
C*-algebra induced by the state co s. 

So far for the equilibrium statistical mechanics. In this paper we are 
interested in irreversible thermodynamics. We introduce an irreversible 
evolution, a quantum generalization of a classical Markov process, which 
satisfies the detailed belance condition. Here we define the evolution on the 
original system ( d ,  p) and show in the next sections that it induces a bona 
fide irreversible evolution on the fluctuation algebra. Suppose that the 
system ( d ,  ~,) is Ll-asymptotically Abelian, i.e., there exists a norm dense 
*-subalgebra do of d such that 

f~  ds II U~x, y]  II < o0 
- - o o  

for all x, y e do. 
Assume also that do c d~, the analytical elements of d for ~,. 
Consider now the maps 

i 
o o  

L~(.) = ,it dsf(t){~sIx)[., ~s+,x] + [~sx, "3 ~s. ,x} (2.5} 
- - o 9  

for all x = x*~ do and f a complex function satisfying the following: 

(i) f is analytical in the strip {z ~ C 10 < Im z < 1 }, and continuous 
and bounded on its closure. 

(ii) f i s  analytic in t~, dr). 
(iii) fs dr). 
(iv) t ~ f ( t )  is of positive type. 

Remark that the Fourier transform f of f exists and satisfies 

(iii)' f ( - 2 )  = f ( 2 )  e -~. 

(iv)' f (2)  > 0. 

The integrals in (2.5) are in the norm sense. It is well known r that the 
maps L f are densely defined, dissipative maps of ( d ,  p) satisfying the 
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condition of detailed balance with respect to p, i.e., for all yi (i = 1, 2) in the 
domain of L f we have 

L f f :, (Y~ Y2) - L~ (y~) Y2 - Yx Lf(Y2) ~> 0 (dissipativity) 

P(Lf  (yl) Y2) = P ( y l L f  (Y2)) 

(detailed balance or microreversibility) 

(2.6) 

These maps can be derived from a microscopic interaction between the 
system and a heat reservoir in the weak coupling limit. (13) Formally they 
are of the type of generators of semigroups of completely positive maps. (14~ 

We will develop the theory for Ll-asymptotically Abelian systems 
( d ,  0~'t, p). Technically, the finite-dimensional systems [i.e., d = N ( J g )  
with dim ~ < ~ ;  see ref. 9] are excluded. However, this case, being even 
easier, can be done along the same lines by replacing one of the time 
integrals in formula (5) by a mean. 

We complete this section by deriving some spectral properties for the 
system (~r ctt, p) introduced above. 

I_emma 2.3. Let p be a positive, regular, Borel measure on N with 
compact support; then its Fourier transform 

ki(t) = f e it~ d#(2) 

exists. If/J �9 LI(~, dt), then # is absolutely continuous w.r.t, the Lebesque 
measure and 

t �9 

- I dt em72(t) 
d2 J 

ProoL Denote R(2) = ~ dt eitZ~(t). As fi is the Fourier transform of a 
finite positive measure, it is of positive type and R(2) = R(2). Hence, for all 
test functions q~ and using fi �9 zl([~, dt), 

f a2 R(2) ~o(~) = f at r  p(t) 

Therefore R(2) d2 = d#(2) in the sense of distributions. As p is regular and 
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of bounded support, the test-function space is dense in L~(N, d/z) (Ref. 15, 
Theorem IV.13), and 

for all f e L l ( N ,  d/z). | 

Consider now the GNS representation of d induced by the state p; 
denote by JC/p = sd~ the yon Neumann algebra generated by d o or by d .  
If 12 o is the cyclic vector of the representation, then the representation 
space ~ is generated by the set JC/pf2p. Because of the KMS property of 
the state p, the cyclic vector 12p is also separating for JC/p. 

Denote by Hp the GNS Hamiltonian acting on oggp: 

O~t(X) Qp=eitHoxg"Jp ", X e ~4 

and by Ep the projection operator on the time-invariant subspace of ~ .  
Let 

be the spectral representation of Hp. For 0 coY go, denote the associated 
spectral measure by 

d#o(2 ) = (~O, dE_),O) 

Its spectral support is then 

A~,= {2~ ~ [ # 0 ( [ 2 - ~  , 2 + e ] ) > 0  for all e>0}  

Clearly, A~, is the support of the Fourier transform of t ~ (0, ei~H"0). 
If 0 = zg2p, Z e d ,  we write for simplicity d/z~, A~ for d/z~, =z~, A0 =~ao 

and call Az the spectral support of z. For f e L l ( R ,  dr), denote 

Because 

x ( f ) = f  dt f(t)~tx; x e d  

fd t  II [cr Y]ll < IIfltl fd t  II [~tx, y]lt 

we may always assume that x(f)  e do for x e sr Finally, remark also that 

x(f)  g2 o = f f(2) dE~ xl2 o =)~(--Hp) xf2p 
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P r o p o s i t i o n  2.4. If x ~ d 0  such that 0~A x and Ax is bounded, 
then the spectral measure p~ is absolutely continuous w.r.t, the Lebesgue 
measure and 

d#x(,~ ) 1 f 
d2 1 - e  -4 dte-i'4P([X*'C~'x]) 

Proof. Take f ~ L l ( ~ , d t )  satisfying the conditions of (2.5). Let 
g(t)= f ( t ) -  f ( - t ) ;  then g~Ll(~ ,  dt) and 

~(,~) = - 8 ( - ~ )  = f( ,~)(1 - e - 4 )  

Denote the finite positive measure [(2.5), property (iv')] 

dvf(2) = f(2)(1 - e-~): a#x(2) 

Using the KMS property of p (ref. l l ,  Theorem 5.3.14) 

d # x . (  - 4 ) - 4 
~-e 

dvx(,~ ) 

and one gets, using (2.5), property (iii'), 

I e -"4  dv/ ,Z)  

= f e-"4g(2)[(x~, dE_4xOp) - (x*f2o, dE4x*f2p)] 

= - -p ( [x* ,  ~ _ , x ( g ) ] )  

As x ~ do ,  the Fourier transform of vf is an L1-function. By Lemma 2.3, 

dvA~) 
- f  dt eU4p([x *, ~_tx(g)])  d2 

Using the Ll-property of g, one computes 

dvf(2) 

=f(2)(1 - e 4) f dt e-~'~p(x *, O~tX ) 

The proposition follows from the fact that 0~ A~, 3~ being bounded, and 
(2.5), property (iv'). | 
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In the following, we wil also assume that p is a factor state. Hence p 
is an extremal KMS state. Together with the Ll-asymptotic Abelianness of 
the system, this implies that the state p is strongly clustering (ref. 11, 
Theorem4.3.24), and that Ep is the rank-one projection on the cyclic 
vector t2p (ref. 11, Theorems 4.3.20, 4.3.23). For completeness the spectral 
properties of such systems can be summarized as follows: 

Proposition 2.5. Let ( d ,  ~t) be an Ll-asymptotic Abelian system 
and p an extremal KMS state; then the absolutely continuous spectrum of 
Hp is R, the point spectrum of H o is {0}, and the singular continuous 
spectrum of Hp is empty. 

Proof. Clearly 

~p = Ep WR@ (1 - E R )  fffp 

From spectral theory we know that (1 - ER) fffp is the closure of the set 

{Xs Ix ~ do, 0 r A x, A x bounded} 

By Proposition 2.4, ( 1 -  E R ) ~  is the absolutely continuous spectral sub- 
space; Epfffp is the point spectral subspace and hence there is no singular 
continuous spectrum. Finally, that the spectrum is ~ follows from ref. 11, 
Theorem 4.3.28. | 

3. C E N T R A L  L IM IT  T H E O R E M  

First we extend the map L f of (2.5) on ( d ,  p) to the system (~, COp). 
We substitute in (2.5) the observable x s do,s, by its local fluctuation: 

1 
)7" = )_2 [x i -  p ( x ) ]  ~ 

and obtain as a densely defined map of 

S Lf ,  = ds{c~,(~n)[ ., ~s()7(f)")] + [e,(2"), .3 es(2(f)n)} (3.1) 
c o  

Remark that the set 

is in the domain of Lf , .  From now on, we work with a fixed observable 
x s do, sa and a fixed function f 
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Here we prove by a central limit theorem that the limit n --* ~ of (3.1) 
yields a map on the algebra of fluctuations W(~r O-p). In Section 4, we 
prove that this map is exponentiable on this algebra and yields a semi- 
group of unitary preserving completely positive maps. Such semigroups are 
called dynamical semigroups. 

L e m m a  3.1. If x, y ~ d o .... then for all n ~ N, exp i~ n belongs to the 
domain of the map L~~ of (3.1). 

Proof. Clearly 37" belongs to the domain because of the bound 

Using the inequality 

II [e% z2] II ~< II [z1, z2] II 

for all zl,  z2 elements of a C*-algebra such that z~ = zl,  one gets the same 
bound as above for 

IIL~,(exp iP")II 

proving that exp iy n also belongs to the domain of L{,. | 

Now we have the following central limit theorem. 

T h e o r e m  3.2. For  all zl,  z2 ~ z~c~a and x, y E do .... 

lim c%((exp i~7) Lf~ ijT") exp iS~) 
n ---~ oo 

= O,)s(W(Z1) t p ( m ( y ) )  W ( z 2 )  ) ( 3 . 2 )  

where: Lp is understood as a map on the GNS representation of the fluctua- 
tions induced by ~o~ : 

Lp(W(y)) = (iBp(Fp y) + Xp(Y)) W(y) 

Fp is a linear map of ~r 

Fo(y)=f ds{c~,xp([y, 7,x(f)])+p([c%x, y ] ) ~ , x ( f ) }  (3.3) 

)~p is a functional on s~r 

Xp(Y) = f ds p( [y, ~x])  p([y, c q x ( f ) ] )  ~< 0 

and finally Bp(-) is defined in (2.4). 
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Proof. By Lemma 3.1, the expressions in (3.2) are well defined. For 
notational convenience, we redefine all operators x, y,... such that 
p(x) = p(y) . . . . .  0. Remark that using the product property of top, we 
have 

nlirn top(exp i~" exp i~". . . )  

x ) 

1 
= exp - ~ [p(x 2) + p(y2) + 20(xy) + ...  ] 

= e x p  - ~ s ( x + y + . - . , x + y + . . . ) - ~ a p ( X , y )  . . . .  

= COs(W(x ) W(y ) . . . )  (*) 

For the last step we used the product rule for Weyl operators (2.2) and 
Theorem 2.1. In fact, the property (*) is a straightforward extension of that 
theorem. Analogously, one gets 

lim op (expi2 n) yj expiff ~ =to,(W(x) W(z))p(y)  (**) 
n ~ c ~  \ H  j =  1 

l i r n  top ((exp JR") fi" exp i2 n) = tos(W(x) Bp(y) W(z)) (***) 

for all x, y, z in ~a"  Consider now the map L~.. Using the formula 

I 

[e iy, x] = i fo du eiUy[y, x] e i(1 -")Y 

for x and y, elements of a C*-algebra, one gets 

1Lm ~ top((exp i~)  L~.(exp ifi") exp i~)  

= nlim f dt ds f ( t )  i f~ du COp((exp i~;)~s.~n(exp iu;")) 

1 & 
+ -  ~ [yj,  ~ + , x j ]  exp[-i(1 - u )  37"] exp(ie~) + ... 

n j = l  
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Using (*), (**), (***), the Lebesgue dominated convergence theorem, and 
the commutation relation (2.2) in the form 

[ w(y), 8p(x)] = ~(x, y) w(y) 

one gets as limit 

o~s(W(z,)Lp(W(y)) w(z2)) I 

Remark that the limit map L o depends on the chosen x e do,sa and the 
chosen function f [see (2.5)]. For notational convenience, we omit the 
indices x and f However, the p-state dependence of this limit is one of 
the essential outcomes of the above theorem. This is indicated by the 
index p. 

The limit map Lp has the same structure as the original map L {, in 
the sense that a formal computation yields 

Lp(W(y)) = LBp(x)(W(y)) 

= f dt ds f(t){~sBp(x)[ W(y), (~s +,Be(x)] 

where ~ is the quasi-free time evolution of the fluctuations (Theorem 2.2). 
The map Lp has, however, the important property that it maps rnonomials 
in the field operators, say of order n, into linear combinations of 
rnonomials of field operators of order less than or equal to n. This kind of 
map is called a quasifree map. As an illustration, we give the map Lp 
explicitly on the monomials of order one and two: 

Lp(Bp(y)) = Bp(Fp y) 

Lp(Bo(y) 2) = Bp(Fp y) Bp(y) + Bp(y) Bp(Fp y) - 2Zp(y ) 

In fact, it turns out that these two formulas are sufficient to characterize 
completely the Lp on the whole CCR-algebra of fluctuations. 

4. MACROSCOPIC DYNAMICS SATISFYING THE ONSAGER 
RELATIONS 

First we prove that the map Lp of Theorem 3.2 is the generator of a 
dynamical semigroup on the yon Neumann algebra W(s~C~a , %)" generated 
by the fluctuation CCR-algebra and induced by the quasifree state o) s (see 
Theorem 2.1). 

822/50/5-6-12 
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In general a dynamical semigroup (14'~6,a7) on a v o n  Neumann algebra 
J / / i s  a one-parameter semigroup {V,] t e  ~+} such that: 

(i) 7, is a completely positive map of ~ '  for all t ~> 0. 

(ii) 7t(~ ) --- ~. 

(iii) 70 is the identity map. 

(iv) 7, is a normal map for all t/> 0. 

(v) t--* 7,(X) is ultraweakly continuous for all Xe  ~ ' .  

If one has given such a dynamical semigroup ~,, then it defines a generator 
L. The domain of L is the set of all X~ ~ '  such that 

u.w. lim ?~(X)-X 
t ~ 0  + t 

exists. The limit itself defines the generator L. 
We begin with the study of the map K s of d with domain d o and 

given by 

Fp(y)--f ds{~sxp([y, a~x(f)])+p([asX, y] )a~x( f )} ,  y e d  (4.1) 

L e m m a  4.1. The map Fp satisfies: 

(i) 
(ii) 

(iii) 

(iv) 
(v) 

r . ( ~  ) = o. 

Fp is Hermitian: i.e., Fp(y)* = F'p(y*); y e do. 

Fp is symmetric with respect to p; i.e., for all y, z a ~r 

p(yFpz) = p(Fp(y) z) 

pOFp=O. 

Kp is negative definite with respect to p, i.e., for all y ~ do 

p(y*r,  y) ~ o 

ProoL Part (i) is trivial 

(ii) Compute 

Fp(y)* * 
f dt dsf(t){asxp([~s+,x, y*] )  + s+,P([Y , c~sx])} 

Performing the coordinate transformations s + t ~ s a n d  t ~ - t ,  one gets 

ray)*  = f dt ds f ( -  t){asxp([as+ ix, y * ] )  

+ as +tP([Y*, O~s+ tX]) } 

= r e ( y * )  
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The last equality follows from f ( - t ) = f ( t )  [see (2.5)]. The proof of (iii) 
is analogous to the proof of Theorem 2.2 of ref. 8; (iv) follows from (i) and 
(iii). To prove (v), remark that 

p(y *F o y) = f dt ds f ( t ){p(  [y, ~, + ~x] ) p(y*~sx) 

+ p([c~,x, y]) p(y*~,+,x)} 

= f dt d s f ( t -  s){p([y, ~,x]) O(y*~,x) 

+ p([~sX, y])  p(y*o~,X) } 

For fixed s, consider the function 

t ~ F(t, s) = f ( t - s )  p([~,x, y])  p(y*c~,x) 

It is analytic in the strip {0 < I m  z < 1 }, continuous, and bounded on its 
closure. It follows that 

f dt F(t ,s)= f d tF( t+i , s )  

Using this, the KMS property of the state p, and f ( t  + i ) = f ( - t ) ,  one gets 

p(y*F o y) = --f dt ds f ( s  - t) p( [~tx, y]) p( It%x, y]) <~ 0 

because the function f is of positive type. | 

The map F ,  on s~r defines an operator, denoted by the same symbol, 
on the Hilbert space ovf;: 

Fp(y~Qp) = Fo(y ) ~p; y e d  o (4.2) 

Next we characterize completely this operator. For x = x *  S do, consider 
the function 

)-e ~ ~ / ~ ( 2 )  = - f ( 2 ) ( 1 - e - a ) f d t e - i ' ~ p ( [ x , ~ t x ] )  (4.3) 

From the properties o f f  in (2.5) and the time invariance of p, it follows 
that 

F-~(2) = P ; ( -  )0 = / ' ; ( 2  ) 
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*x is a If x has bounded spectral support, Proposition 2.4 implies that Fp 
negative bounded function. Then 

F;(Hp) = f P•(2) dE ~ 

is a negative bounded operator on ~ .  
Again for x = x * e  ~r c J/p, define the subspace ~ of ~ generated 

by the vectors 

{x(h)g2plx(h)= f d t h ( t ) e , x ; h e L l ( N ) }  (4.4) 

Denote by P~ the corresponding orthogonal projection. Because 

~sx(h) = x(h,) 

where h, is the translate of h over s, the space Yt'~ is time invariant, i.e., 

ei*H~x( h ) [2 p = ~,x( h ) F2 p = x( h s ) [2 p ~ ~r Xp 

and hence [Hp, P~] = O. 

k e m m a  4.2. Suppose that the observable x = x*~ ~o has a boun- 
ded spectral support; then the operator Fp on Wp in (4.2) extends to a s.a. 
negative bounded operator explicitly given by 

F o  = ~ x x (4.5) F o(Ho) Po 

Hence Fp is the generator of a contraction semigroup on ~ ,  explicitly 
given by 

exp(tFp) = (1 - P ; )  + {exp[ tP ; (H, ) ]  } P ;  

Proof. (a) First we show that the range of Fp is contained in Wx p" 

Indeed, for all y ~ ago, from (4.1) and (4.2), 

rp(y~2~) = Fp(y) f2 p 

= f ds p([y,  ~,x(g)])  ~,x~p 

where g(t) = f ( t )  - f (  - t); g ~ L 1 (~). As x, y ~ do, the function 

s ~ FXp'U(s) = p([y,  a ,x(g) ] )  e L ' (R)  
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Hence Fp(ys p) = x(F~ 'y) f2 p ~ ~ or 

P~ Fp = Fp 

(b) Take now y = x(h) with h ~ L~(R); then one computes 

Fp(x(h) E2p) = x(h * F p) E2 p 

x x (with Fp 'x = F~), where h �9 Fo is the convolution product of h and Fp, and 
therefore h * F~ e LI(~). Using f ( t  + i) = f (  - t), one gets 

~(2) -= f(SQ(1 - e -~') 

implying that indeed the function P~ defined by (4.3) is the Fourier trans- 
x form of the function Fp introduced above. On the other hand, one more 

straightforward computation yields 

P~(Hp) x(h) ~p = x(h * F~) E2p = Fpx(h) ~2p 

for all heLl(~) .  
As the observable x has a bounded spectral support, the above expres- 

sion proves that Fp extends uniquely to the bounded operator *x F p(Hp) on 
the invariant subspace fffx p "  

(c) Using (a) and (b), i.e., P~Fp = Fp and the fact that Fp is a boun- 
x ded operator on Yfp, one gets for all y, z e do 

(yap, FppXpzs (P;rp y~p, zoo) 

= (Fp yE2p, zg2p) 

= (ys FpzE2p) 

For the second equality we used Lemma 4.1(iii). This proves 

o r  

x FpP p = Fp = P~Fa 

Fp = P~FpP~ 

and because of (b), I~  is a bounded operator given by 

Fp = P~(Hp) P~ 

It follows immediately that Fp is the generator of a contraction semigroup 
on ~ .  The explicit formula for the semigroup is a direct consequence of 
Eel, F~(Hp)] =0. | 
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Consider now the real vector space ~ e  of 5r generated by s/o,s, f2p. 
By continuity, the symplectic form ap of (2.1) and the positive bilinear 

form s of (2.3) extend to ~ e .  They are explicitly given by 

,,p(q,, ~o) = - i ( ( O ,  ~o) - (q,, 0 ) )  

s(O, ~o) = R e ( 0  - (s ~k) 12p, q~ - (g2p, q~) Q . )  

for ~h, (~0 e W p  Re. 
Also, by continuity, 

w(do .... ~0)"= w ( ~  ~ ~p)" 

where the bicommutant is taken in the GNS representation of the state co s. 
By Lemma 4.1(ii) one also has 

/-p(~Re) ~ ~ R e  (4.6) 

NOW we are able to formulate the main result of this section. 

T h e o r e m  4.3. Suppose x = x *  ~Ser has a bounded spectral sup- 
port. The contraction semigroup exp t ip  on 3/gp induces a dynamical 
semigroup (T,),~>o on the von Neumann algebra W(y#R~ it is 
explicitly given by 

TtW(y)=W(etrpy)  ~~  y s ~ R e  
o9,(w(#r~y)) ' 

The generator of r, is a self-adjoint extension of the symmetric map Lp, 
defined in Theorem 3.2. 

Furthermore the semigroup T, satisfies the Onsager relations, i.e., 

cos(W(y) z t W(z)) = ogs(v,(W(y)) W(z)) 

for all y, z e ygRe. 

Proof. It follows from Lemma 4.2 that for all t/> 0, the map 

~t: W ( Y ) - ~ v t W ( Y ) =  W(etr, y ) ~o~(W(y)) 
oJ ~( W( etrpy ) ) 

is well defined. It follows from refs. 17 and 18 that (z,)t>~0 is a dynamical 
semigroup on the yon Neumann algebra iodicated above. 

In order to show that L o is the generator of the dynamical semigroup, 
we compute the weak operator topology derivative, using the symmetry of 
Lp and the formula 

1S a),(W(y)) = exp -- 5 (Y, Y) 
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The result is 

d 
~ , w ( y ) l , = 0 =  [iB~(roy)+s(roy, y)] w(y) 

Using the computation in the proof of Lemma4.1(v), one has 
zp(y) = s(rp y, y). 

Finally, the Onsager relations are easily established by an explicit 
computation using again the properties of F o given in Lemma 4.2. This 
completes the proof of the theorem. | 

As is well known, (~) the Onsager relations or Onsager's theorem are a 
macroscopic expression of the property of microscopic reversibility or the 
detailed balance property of the microsystem. In the literature the Onsager 
relations are mostly expressed in terms of the generator L o of the macro- 
system evolution ~,. Normally, it is argued that the generator L o is sym- 
metric. (1'9) It is clear that L o being symmetric is equivalent to vt = exp t L  o 

being symmetric. 
Here we get a rigorous proof of the Onsager relations starting from a 

microscopic model. We proved that the Onsager relations are in fact 
equivalent to the detailed balance property of Lp or Tt with respect to the 
macroscopic system, given by the CCR-algebra of fluctuations of the 
microsystem, its equilibrium state cos, and its time evolution ~,. The basic 
theorem for the transition from the microlevel to the macrolevel is of 
course the central limit theorem (3.2). 

Furthermore, in connection with Theorem 4.3, remark that the irre- 
versible evolution rt is completely determined by the map Fp acting on the 
space of thermal wave functions o~p. In this context Lemma 4.2, formula 
(4.5) yields very detailed information about the spectrum of Fp. For 
various models the approach to equilibrium can be read off immediately 
from this explicit expression. We come back to this point in the next 
section. 

5. E N T R O P Y  P R O D U C T I O N  A N D  A P P R O A C H  TO 
E Q U I L I B R I U M  

Above we arrived at a microscopic foundation of the macroscopic irre- 
versible dynamics satisfying the Onsager relations. In this section we treat 
several other aspects of the irreversible dynamics, such as the approach to 
equilibrium and the related principle of minimal entropy production. For 
a physical introduction to these notions see refs. 1 and 9. 

By the variational principle of statistical mechanics, an equilibrium 
state is characterized as a state minimizing the free energy density of the 
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system. In phenomenological theories one considers a state "near to 
equilibrium" and looks for the increment in the free energy up to first 
approximation. As deviation from an extremum, the first approximation is 
a quadratic function in the perturbation. This is called the harmonic 
approximation or the linear response. 

In the scheme developed above we have a mathematically rigorous 
understanding of the harmonic potential. First we describe states which are 
macroscopic but small perturbations of the equilibrium state. 

Following Section 2, we consider again the microsystem ( d ,  p, a,) and 
the macrosystem (~, COp). For any y ~ ~ a  consider the perturbed state of 

given by 

COp a i = 

�9 j = l  j > n  

where py/n is the equilibrium state for the perturbed Hamiltonian 
Hp + y/x/-n. In ref. 2 we proved the following result, which is a generaliza- 
tion of Theorem 2.1. 

Theorem 5.1. For all y, Ze~sa the limit 

)3 n lira cop (exp i2 n) 
n ~ o o  

exists and defines a quasifree state cos,y of the CCR-C*-algebra of fluctua- 
tions W(dsa, o-p) such that 

cop (exp i2")= COs, y(W(z)) )im'" 

where 

cos.x(W(z)) = cos(W(z)) exp - i du[p(zae~ y) - p(z) p(y)]  

and 

CO~(W(z)) = exp - �89 z) | 

Note that the sesquilinear map 

t "  1 

(x, y) ~ = Jo du p(x*~iu y); x, y e d 

is the well-known Duhamel two-point function or the so-called Bogoliubov 
scalar product. For a mathematical treatment of this quantity see ref. 19. 
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Remark also that all states of the type co,,y defined in Section 4.1 extend 
to the CCR-algebra W(~'~[ ~, crp). Denote by ~p the state space of all 
perturbed states of this type, i.e., 

~p= {cos.ylY~ alg~ e } (5.1) 

This is the set of small perturbations of the equilibrium state cos of the 
fluctuations. 

We prove that this class of perturbed states is invariant for the 
Onsager evolutions z, of Theorem 4.3. 

Proposition 5.2. The set of states {p is globally r,-invariant, in 
particular, 

O,) s , y  o 75 t = ( O s , e t F p y  (5.2) 

Proof. The proposition follows from the self-adjointness of F ,  with 
respect to p and the fact that Fp commutes with the time evolution c~, 
(Lemma 4.2). Indeed, using the explicit formula of z, (Theorem 4.3), then 

cos, y(r,W(z)) 
1 

= co,(W(z))  exp - i fo 

1 

= cos(W(z)) exp - i f0 

= ~s,J~AW(z))  I 

du p{ (exp tFp)[z  -- p(z)] ~,,[-y - p (y ) ]  } 

du p{ [z - p(z)] ~iu(exp tFp ) [y  -- p(y) ]  } 

Next we study the approach to equilibrium, i.e., we establish the 
existence of the limit 

t lim-~o c~ ~ rt 

First we have a preparatory lemma, expressing that the set of zeros of the 
Ax (Lemma4.2) is small in the appropriate way. With the function F p 

notation of Section 2 we have the following result. 

L e m m a  5.3. For x = x * ~ s r  with bounded spectral support Ax, 
denote I ~ = { 2 ~ r P ~ ( 2 ) = 0 } ;  then for all ~ [see (4.4)] with 
(~b, (2p)= 0 one has 

#~(I~) = 0 

x Proof. First remark that 0 ~ Ip and that for all ~ ~ acf x 
P 

u+({0})  = (~,, e~O) = (,p, o~ ) (n~ ,  r  
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due to the ergodicity of p. Hence we have to prove that p0 ( I~ \{0} )=0 .  
For  ~b = Xf2p this is an immediate consequence of Proposition 2.4 and the 
regularity of the measure. 

For  ~ = x ( f )  f2p, f e  LI(R, dt), functional calculus yields 

@x(f)(~) = I f ( -  X)l 2 @x(,Z) 

implying 

px(f)(I;\{O}) <~ Ilflf 2 #x(i~\{0})  = 0 

For  general 0 e 9f'~, there exists a sequence {f.},  fn �9 LI( R, dt), such that 

lim (q~, x(f . )  (2p) = (q~, 0) for all (p ~ 
n 

Hence 

# , ( I ; \ { 0 } )  = (0 ,  E,;\{o)~9) 

= lim (x(f . )  f2p, El;\{o}x(fn) Me) 
n ~ o o  

( r \ { o } )  = lim #x(Zo) p 
n ~ o o  

= 0  ! 

T h e o r e m  5.4. 
and for ~O~,y E 30, 

For  all x = x * e  do with bounded spectral support 

lim o)s, y O Z t = o o s , ( l _ ~ ) y ~  o 
t ~ o o  

where the limit is taken in the weak *-topology. 

Proof. (i) Consider first the case that 
f e L l ( N ,  dt) 

p ( x ) = 0 .  Then for all 

(t2 o, x ( f )  Do) = f(o)(D o, xDp) = 0 

Hence P~f2p=O and also (0, f2p)=0  for 0 =pXy, ye~fRe p �9 

By Lemma 5.3 and the regularity property of the measure/~0, there 
x exists a sequence of opens (On). such that Ip __ On for all n and 

x lim t%(O~) = #+(Ip)  = 0 
n ~ o o  



Quantum F luc tuat ions and Onsager Relations 743 

For all q) e 

[(~o, {exp[tP•(Hp)] } P~p y)l 2 <~ (q), qg)(P; y, exp[2tP;(Hp)] P; y) 

= (q), ~o) f. {exp[2tP;(2)]}(tp, dE~.O) 
~ zJ O 

Take n large enough such that 

#~ < 2(q), ~o-----~ 

~ x  Using the negativity of the function Fp, w e  obtain 

I(r {exp[tF;(Ho)] } P; Y)I 

~< ~+  (q~, q~) {exp[2tP;(2)] }(4,, dE_j.~,) 
0\0,, 

Because A is bounded and Ao___A~, the set Aq,\O, is compact in ~. The 
continuity of P~ implies that 

sup /6;(2) = - c .  < 0  
.~ E A ~ \  On  

For t large enough, 

e-2tC"(y, y)(q~, ~o) < g/2 

and 

1(~0, {exp[tP~(Hp)] } P~ y)l 2 

~< ~+  (q~, q~)[exp(-2tc.)] (4, dE_;.r 
r 

<~ -~+ (q), q))[exp(- 2tc.) ](P~ y, P; y) < e 

Using Lemma 4.2, this shows the existence of the following limit: 

lim [exp(tFp)] y 
t ~ o o  

= ( 1 - P p )  y +  lim {expEtP~(Hp)]} P;y 

= ( l - P ; )  y 

Together with (4.6), y ~ ~Re implies that P~y e ~,~e. 
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Finally, together with Proposition 5.2, one has that for all z e Jr 

lim cO,,y(zTW(z)) 
t ---* el3 

= tl im COs, Eexp(tr~o)]y(W(z)) 

= e)~(W(z)) lim exp[ - i(z - (t2o, z) s [exp(tF~)]  y - (K2p, y) t2p)~ ] 
t ~ c ( 3  

= o9~(W(z)) exp[  -- i(z -- (K2o, z) (2p, (1 -- P ; )  y -- (f2p, y) s ] 

= cos(W(z)) exp [ - i ( z -  (K2p, z) (2p, (1 - P~) y - (K2p, (1 - Pp) y) 12e) ~ ] 

= O : , s , ( , _ ~ y ( W ( z ) )  

(ii) The case p ( x ) r  As 

Epxl2 p = p(x)  f2 p ~ 9 f  ~ 
x _ _  one has P p f 2 p -  f2p. 

Analogously as in the case (i), one shows that 

lim [exp( tFp)]  y = (1 - P~) y + (y, f2o) K2p 
t ---+ ~ 

implying 

x R e  P p y s ~ p  for all y E ~  e 

and for all y, Z e ~Ro  
P 

lim o9,,,(~ W(z))  = cos, (1 - ~)y(IV(z))  
l ~ o o  

finishing the proof of the theorem. | 

Clearly, this theorem describes in a detailed manner the approach to equi- 
libri.um. For  a given x ~ Sr all perturbations o)~,y with y ~ J/g~ are driven to 
the equilibrium cow of the fluctuations. If y belongs to the orthogonal com- 
plement, then the perturbed state is left unchanged. Hence the mechanism 
of the approach to equilibrium is seen very explicitly. 

As far as the rate of convergence to equilibrium is concerned, this 
theorem does not give any information. For  that one should analyze more 
carefully the set of zeros IpX of the function Fp. ~ 

Finally, we turn to the notion of entropy production of the states e),.y 
under the irreversible dynamics ~t. In ref. 2 we proved the following 
formula: 

S(cO~,y [co~) = - �89  - (y, f2p) t2p, y - (y, Op) f2p)_ (5.3) 
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for all y e ~,Y~o ~ and cO,,ye ~o. In fact, we proved it for a dense set of 
elements y and then extend it by continuity. Furthermore, S(oo~,yl~O,) 
stands for the relative entropy of ~O~,y with respect to o)~ defined in the 
frame of the Tomita-Takesaki theory, m) The importance of this result 
(5.3) is situated not only in the existence of this relative entropy, but also 
in its explicit expression, being quadratic in the perturbation y. 

Physically, the relative entropy (5.3) is shown ~2~ to be the increment 
in free energy due to a perturbation of the Hamiltonian by a fluctuation. 

As usual, the entropy production of the state oO~,y under the dynamics 
~' is defined by 

d 
ax(C~ =-'dr S(~176 T~ I C~176 m'7)It=~ 

We have the following result. 

T h e o r e m  5.5. For x = x * e d o . s a  with bounded spectral support 
A x, and for all y e ~,uf~e, the following hold: 

, / - x  (i) ax(e) s y ) = - (  oY, Y)~ >~0" 
(ii) Ifax(~Os, y ) = 0  for all X e d o  .... then co,,y=~o,. 

ProoL (i) Follows from Lemma 4.2, Proposition 5.2, and formula 
(5.3) by a direct computation. 

(ii) Take any x~do ,  sa with 0r  then from the definition of the 
Duhamel two-point function, Proposition 5.2, and part (i), one computes 

r l - e  2 x 
ox( o,,y) = - J  ---T-- (re y' du_  y) 

_ r  1 - e-;" - 
k f;(k) duo(k) 

where ~p = P~ y. 
As 0 ~ Ax, one has that p(x)= 0, implying that P ~ p - - 0  (see proof of 

Theorem 5.4). Hence (~, s =0.  From Lemma 5.3, F~(2) #0 ,  kt0-almost 
everywhere. 

Hence, a s / ~  < 0, ax(O~, y) = 0 implies 

f x x 0 = d#~,(k) = (Po Y, Po Y) or P~ y = 0 

But this holds for all x ~ do, 0 41 A x. Therefore 

(xf2p, y) = 0 for all x with 0 r dx 
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From spectral theory, y ~ Ep ocg o and by ergodicity of the state p, 

y = (12p, y) f2p 

andm~,y=CO s . | 

It is clear that also the entropy production of a perturbed state is again a 
quadratic expression in the perturbation y. The second statement of the 
theorem is the mathematical expression of the principle of minimal entropy 
production. 
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